Neomycin-capped aromatic platforms: quadruplex DNA recognition and telomerase inhibition.
نویسندگان
چکیده
A series of aminoglycoside-capped macrocyclic structures has been prepared using intramolecular bis-tethering of neomycin on three aromatic platforms (phenanthroline, acridine, quinacridine). Based on NMR and calculations studies, it was found that the cyclic compounds adopt a highly flexible structure without conformational restriction of the aminoglycoside moiety. FRET-melting stabilization measurements showed that the series displays moderate to high affinity for the G4-conformation of human telomeric repeats, this effect being correlated with the size of the aromatic moiety. In addition, a FRET competition assay evidenced the poor binding ability of all macrocycles for duplex DNA and a clear binding preference for loop-containing intramolecular G4 structures compared to tetramolecular parallel G4 DNA. Finally, TRAP experiments demonstrated that the best G4-binder (quinacridine ) is also a potent and selective telomerase inhibitor with an IC(50) in the submicromolar range (200 nM).
منابع مشابه
Targeting Human Telomeric G-Quadruplex DNA and Inhibition of Telomerase Activity With [(dmb)2Ru(obip)Ru(dmb)2]4+
Inhibition of telomerase by inducing/stabilizing G-quadruplex formation is a promising strategy to design new anticancer drugs. We synthesized and characterized a new dinuclear complex [(dmb)2Ru(obip)Ru(dmb)2](4+) (dmb = 4,4'-dimethyl-2,2'-bipyridine, obip = (2-(2-pyridyl)imidazo[4,5-f][1,10]phenanthroline) with high affinity for both antiparallel and mixed parallel / antiparallel G-quadruplex ...
متن کاملEthidium derivatives bind to G-quartets, inhibit telomerase and act as fluorescent probes for quadruplexes.
The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we describ...
متن کاملG-quadruplex preferentially forms at the very 3′ end of vertebrate telomeric DNA
Human chromosome ends are protected with kilobases repeats of TTAGGG. Telomere DNA shortens at replication. This shortening in most tumor cells is compensated by telomerase that adds telomere repeats to the 3' end of the G-rich telomere strand. Four TTAGGG repeats can fold into G-quadruplex that is a poor substrate for telomerase. This property has been suggested to regulate telomerase activity...
متن کاملSpecific binding of telomeric G-quadruplexes by hydrosoluble perylene derivatives inhibits repeat addition processivity of human telomerase.
Telomerase is responsible for the immortal phenotype of cancer cells and telomerase inhibition may specifically target cancer cell proliferation. Ligands able to selectively bind to G-quadruplex telomeric DNA have been considered as telomerase inhibitors but their mechanisms of action have often been deduced from a non-quantitative telomerase activity assay (TRAP assay) that involves a PCR step...
متن کاملAnionic phthalocyanines targeting G-quadruplexes and inhibiting telomerase activity in the presence of excessive DNA duplexes.
Anionic phthalocyanines inhibited efficiently telomerase activity even in the presence of excess double-stranded DNA (dsDNA) because of their selective binding to telomere G-quadruplex, although low selectivity of a typical cationic ligand, TMPyP4, to the G-quadruplex allowed telomerase reaction under conditions with dsDNA.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2006